p → = a ⋅ u x → + b ⋅ u y → + c ⋅ u z → {\displaystyle {\vec {p}}=a\cdot {\vec {{u}_{x}}}+b\cdot {\vec {{u}_{y}}}+c\cdot {\vec {{u}_{z}}}}
v → = d p → d t = d a d t u x → + d b d t u y → + d c d t u z → {\displaystyle {\vec {v}}={\frac {d{\vec {p}}}{dt}}={\frac {da}{dt}}{\vec {{u}_{x}}}+{\frac {db}{dt}}{\vec {{u}_{y}}}+{\frac {dc}{dt}}{\vec {{u}_{z}}}}
a → = d v → d t = d p → d t 2 = d a d t 2 u x → + d b d t 2 u y → + d c d t 2 u z → {\displaystyle {\vec {a}}={\frac {d{\vec {v}}}{dt}}={\frac {d{\vec {p}}}{d{t}^{2}}}={\frac {da}{d{t}^{2}}}{\vec {{u}_{x}}}+{\frac {db}{d{t}^{2}}}{\vec {{u}_{y}}}+{\frac {dc}{d{t}^{2}}}{\vec {{u}_{z}}}}
p → = l u r → {\displaystyle {\vec {p}}=l{\vec {{u}_{r}}}}
v → = d p → d t = d ( l u r ) → d t = d l d t u r → + r d u r → d t = d l d t u r → + r d θ d t u θ → {\displaystyle {\vec {v}}={\frac {d{\vec {p}}}{dt}}={\frac {d(l{\vec {{u}_{r})}}}{dt}}={\frac {dl}{dt}}{\vec {u_{r}}}+r{\frac {d{\vec {{u}_{r}}}}{dt}}={\frac {dl}{dt}}{\vec {{u}_{r}}}+r{\frac {d\theta }{dt}}{\vec {{u}_{\theta }}}}
a → = d p → d t 2 = d v → d t = ( d l d t 2 − l d θ d t ) u r → + ( r d θ d t 2 + 2 d l d t d θ d t ) u θ → {\displaystyle {\vec {a}}={\frac {d{\vec {p}}}{d{t}^{2}}}={\frac {d{\vec {v}}}{dt}}=({\frac {dl}{d{t}^{2}}}-l{\frac {d\theta }{dt}}){\vec {{u}_{r}}}+(r{\frac {d\theta }{d{t}^{2}}}+2{\frac {dl}{dt}}{\frac {d\theta }{dt}}){\vec {{u}_{\theta }}}}
d u r → d t = d θ d t u θ → {\displaystyle {\frac {d{\vec {{u}_{r}}}}{dt}}={\frac {d\theta }{dt}}{\vec {{u}_{\theta }}}} et d u θ → d t = − d θ d t u r → {\displaystyle {\frac {d{\vec {{u}_{\theta }}}}{dt}}=-{\frac {d\theta }{dt}}{\vec {{u}_{r}}}}